
CHECKIN(1) CHECKIN(1)

NAME
checkin− rcs check-in utility

USAGE
checkin [options] [file-specifications]

SYNOPSIS
Checkin is an extension of the RCS utilityci. It uses the file’s modification date rather than the current
date as the RCS delta-date.

DESCRIPTION
Checkin uses thercs utility ci. It is normally invoked from thercsput script, but may be invoked in a
standalone manner. Checkin differs fromci primarily in its treatment of the delta date: after invoking ci,
checkinmodifies the delta-date in the archive to reflect the file’s modification date.

This is the fundamental advantage offered bycheckin. The ordinaryrcs methodology uses the current date
as the check-in date. This works well only for large projects in which a central project administrator is
responsible for controlling the versions of source files. It does not work well for small projects, for which
rcs’s primary advantage is its compact storage of multiple versions of a file.

By using the file’s modification date as a reference, you can more easily back up to a meaningful version −
by date, rather than version number.

Archi ve Directory
If the archive directory (e.g., "./RCS") does not exist,checkincreates it before invoking theci program.

Set-UID Operation
The rcsci and co utilities work to a degree in set-uid mode (i.e., the "u+s" protection is set on the pro-
grams). However, the code assumes that the effective uid is root, and does not concern itself with main-
taining file ownership.

Thecheckin package is able to run as a set-uid process for any particular user (e.g., the administrator of a
project). For example, suppose that/proj is the location of project-specific tools, and is owned byadmin.
Then (running as theadmin user):

cp checkin /proj # admin now owns this copy
chmod 4755 /proj/checkin # sets u+s mode

Thereafter, users who invoke /proj/checkin will have the rights ofadmin − for this application.They may
check intorcs any files which they own, into archives which admin owns. Checkin will maintainadmin’s
ownership of the archive files, and the user’s ownership of his working files.

If checkin does not need the set-uid rights (e.g., if the user already owns the archive), checkin resets its
effective uid to the user’s. Thispermits a single copy of checkin to be used for both configuration manage-
ment as well as individual developers.

Sharing RCS Archives
Checkin provides support for shared files by usingrcs’s access lists, and providing special handling for set-
uid operation:

• When you first archive a file usingcheckin, it inv okes the rcs administrative utility to initialize the
access list of the file. It puts theeffectiveuser into the list.

• If checkin is running in set-uid mode, it puts thereal user on the access list as well.

With the access list is initialized, only those users who appear on an access list may place locks on files,
ev en when running in set-uid mode.

Directory-Level Permissions
Before attempting to create or lock an archive file, checkin looks first for the directory-level permissions
which may be set with thepermit utility. If they exist, checkin limits further access rights to those permit-
ted.

1



CHECKIN(1) CHECKIN(1)

OPTIONS
Checkin recognizes all of the "ci" options.

If the "−k" option is used,checkinsupplies a default log-message

FROM_KEYS

Options specific tocheckinare:

−B directscheckin to ignore thebaselineversion. Normally, checkin supplies a default version number
which augments that ofci, by looking at thebaselineversion.

−D causes it to display the actions it would perform, but not to do them (e.g., invocation ofrcs andci).

−Mfilename
provide the check-in message in the given file. Normallyci prompts you for a multiline message.

If the input is not a terminal,checkin assumes that is a pipe, and passes the text (escaped) toci. That
is done best in a script.For random use, to supply the same check-in message for more than one file,
the−M option lets you provide the message via a file.

OPERATIONS
Checkin is used exactly as one would useci. Place a lock on the file using the "−l" option withci (or with
co) when you wish to edit a file. Check the file in using the "−u" option to retain a working copy after
modification.

ENVIRONMENT
Checkin is a C-language program. It invokes ci (with an explicit path, to protect against mishaps in set-uid
mode), and performs pre- and postprocessing of the archive and working file to determine the version to
which the file’s modification date applies.

Checkin uses the following environment variables:

RCS_BASE
is used to specify a default value for initial revision numbers. If the user does not specify the initial
version number of a file,ci assigns the value "1.1". This is used to support the use of module-level
version numbers, while preserving the relationship between changes and revisions: a new version is
made only if the file is changed.

The directory-level revision set by thepermit utility may override this environment variable. See
baselineandpermitfor more details.

RCS_COMMENT
is set to a string controlling the initial setting of the rcs "−c" option. For example, the strings

setenv RCS_COMMENT ’/.c/ *> /’

and

setenv RCS_COMMENT ’/.d/# /,/.bas/REM /’

define comment-prefixes for ".c", ".d" and ".bas" suffixes. (Thesuffix is delimited with the first "." in
the leaf-name).

RCS_DIR
if defined, specifies the directory in whichrcs archive files are found. Normally files are found in
"./RCS".

TZ is the POSIX time zone, which is overridden internally so that file modification dates are independent
of the local time zone.

2



CHECKIN(1) CHECKIN(1)

FILES
Checkin uses the following files

ci the RCS check-in program

rcs the RCS administrative program

ANTICIP ATED CHANGES
None.

SEE ALSO
baseline, rcsput, permit, ded, ci (1), co (1), rcs (1)

AUTHOR:
Thomas E. Dickey <dickey@invisible-island.net>

3


