
YA CC(1) User Commands YACC(1)

NAME
Yacc − an LALR(1) parser generator

SYNOPSIS
yacc [−BdghilLPrtvVy] [−b file_prefix] [−H defines_file] [−o output_file] [−p symbol_prefix] file-

name

DESCRIPTION
Yacc reads the grammar specification in the file filename and generates an LALR(1) parser for it. The

parsers consist of a set of LALR(1) parsing tables and a driver routine written in the C programming lan-

guage. Yacc normally writes the parse tables and the driver routine to the file y.tab.c.

The following options are available:

−b file_prefix

The −b option changes the prefix prepended to the output file names to the string denoted by

file_prefix. The default prefix is the character y.

−B create a backtracking parser (compile-time configuration for btyacc).

−d causes the header file y.tab.h to be written. It contains #define’s for the token identifiers.

−h print a usage message to the standard error.

−H defines_file

causes #define’s for the token identifiers to be written to the given defines_file rather than the y.tab.h

file used by the −d option.

−g The −g option causes a graphical description of the generated LALR(1) parser to be written to the file

y.dot in graphviz format, ready to be processed by dot(1).

−i The −i option causes a supplementary header file y.tab.i to be written. It contains extern declarations

and supplementary #define’s as needed to map the conventional yacc yy-prefixed names to whatever

the −p option may specify. The code file, e.g., y.tab.c is modified to #include this file as well as the

y.tab.h file, enforcing consistent usage of the symbols defined in those files.

The supplementary header file makes it simpler to separate compilation of lex- and yacc-files.

−l If the −l option is not specified, yacc will insert #line directives in the generated code. The #line di-

rectives let the C compiler relate errors in the generated code to the user’s original code. If the −l op-

tion is specified, yacc will not insert the #line directives. #line directives specified by the user will be

retained.

−L enable position processing, e.g., “%locations” (compile-time configuration for btyacc).

−o output_file

specify the filename for the parser file. If this option is not given, the output filename is the file prefix

concatenated with the file suffix, e.g., y.tab.c. This overrides the −b option.

−p symbol_prefix

The −p option changes the prefix prepended to yacc-generated symbols to the string denoted by sym-

bol_prefix. The default prefix is the string yy.

−P create a reentrant parser, e.g., “%pure−parser”.

−r The −r option causes yacc to produce separate files for code and tables. The code file is named

y.code.c, and the tables file is named y.tab.c. The prefix “y.” can be overridden using the −b option.

−s suppress “#define” statements generated for string literals in a “%token” statement, to more closely

match original yacc behavior.

Normally when yacc sees a line such as

%token OP_ADD "ADD"

it notices that the quoted “ADD” is a valid C identifier, and generates a #define not only for

OP_ADD, but for ADD as well, e.g.,

Berkeley Yacc 2024-01-09 1

YA CC(1) User Commands YACC(1)

#define OP_ADD 257
#define ADD 258

The original yacc does not generate the second “#define”. The −s option suppresses this “#define”.

POSIX (IEEE 1003.1 2004) documents only names and numbers for “%token”, though original

yacc and bison also accept string literals.

−t The −t option changes the preprocessor directives generated by yacc so that debugging statements

will be incorporated in the compiled code.

Yacc sends debugging output to the standard output (compatible with both the original yacc and bty-

acc), while btyacc writes debugging output to the standard error (like bison).

−v The −v option causes a human-readable description of the generated parser to be written to the file

y.output.

−V print the version number to the standard output.

−y yacc ignores this option, which bison supports for ostensible POSIX compatibility.

The filename parameter is not optional. However, yacc accepts a single “−” to read the grammar from the

standard input. A double “−−” marker denotes the end of options. A single filename parameter is expected

after a “−−” marker.

DIAGNOSTICS
If there are rules that are never reduced, the number of such rules is reported on standard error. If there are

any LALR(1) conflicts, the number of conflicts is reported on standard error.

EXTENSIONS
Yacc provides some extensions for compatibility with bison and other implementations of yacc. It accepts

several long options which have equivalents in yacc. The %destructor and %locations features are avail-

able only if yacc has been configured and compiled to support the back-tracking (btyacc) functionality.

The remaining features are always available:

%code keyword { code }

Adds the indicated source code at a given point in the output file. The optional keyword tells yacc

where to insert the code:

top just after the version-definition in the generated code-file.

requires

just after the declaration of public parser variables. If the −d option is given, the code is in-

serted at the beginning of the defines-file.

provides

just after the declaration of private parser variables. If the −d option is given, the code is in-

serted at the end of the defines-file.

If no keyword is given, the code is inserted at the beginning of the section of code copied verbatim

from the source file. Multiple %code directives may be given; yacc inserts those into the corre-

sponding code- or defines-file in the order that they appear in the source file.

%debug

This has the same effect as the “−t” command-line option.

%destructor { code } symbol+

defines code that is invoked when a symbol is automatically discarded during error recovery. This

code can be used to reclaim dynamically allocated memory associated with the corresponding se-

mantic value for cases where user actions cannot manage the memory explicitly.

On encountering a parse error, the generated parser discards symbols on the stack and input tokens

until it reaches a state that will allow parsing to continue. This error recovery approach results in a

memory leak if the YYSTYPE value is, or contains, pointers to dynamically allocated memory.

Berkeley Yacc 2024-01-09 2

YA CC(1) User Commands YACC(1)

The bracketed code is invoked whenever the parser discards one of the symbols. Within code,

“$$” or “$<tag>$” designates the semantic value associated with the discarded symbol, and “@$”

designates its location (see %locations directive).

A per-symbol destructor is defined by listing a grammar symbol in symbol+. A per-type destruc-

tor is defined by listing a semantic type tag (e.g., “<some_tag>”) in symbol+; in this case, the

parser will invoke code whenever it discards any grammar symbol that has that semantic type tag,

unless that symbol has its own per-symbol destructor.

Tw o categories of default destructor are supported that are invoked when discarding any grammar

symbol that has no per-symbol and no per-type destructor:

• the code for “<*>” is used for grammar symbols that have an explicitly declared semantic type

tag (via “%type”);

• the code for “<>” is used for grammar symbols that have no declared semantic type tag.

%empty

ignored by yacc.

%expect number

tells yacc the expected number of shift/reduce conflicts. That makes it only report the number if it

differs.

%expect−rr number

tell yacc the expected number of reduce/reduce conflicts. That makes it only report the number if

it differs. This is (unlike bison) allowable in LALR parsers.

%locations

tells yacc to enable management of position information associated with each token, provided by

the lexer in the global variable yylloc, similar to management of semantic value information pro-

vided in yylval.

As for semantic values, locations can be referenced within actions using @$ to refer to the loca-

tion of the left hand side symbol, and @N (N an integer) to refer to the location of one of the right

hand side symbols. Also as for semantic values, when a rule is matched, a default action is used

the compute the location represented by @$ as the beginning of the first symbol and the end of the

last symbol in the right hand side of the rule. This default computation can be overridden by ex-

plicit assignment to @$ in a rule action.

The type of yylloc is YYLTYPE, which is defined by default as:

typedef struct YYLTYPE {
int first_line;
int first_column;
int last_line;
int last_column;

} YYLTYPE;

YYLTYPE can be redefined by the user (YYLTYPE_IS_DEFINED must be defined, to inhibit

the default) in the declarations section of the specification file. As in bison, the macro YYL-

LOC_DEFAULT is invoked each time a rule is matched to calculate a position for the left hand

side of the rule, before the associated action is executed; this macro can be redefined by the user.

This directive adds a YYLTYPE parameter to yyerror(). If the %pure−parser directive is

present, a YYLTYPE parameter is added to yylex() calls.

%lex−param { argument-declaration }

By default, the lexer accepts no parameters, e.g., yylex(). Use this directive to add parameter dec-

larations for your customized lexer.

Berkeley Yacc 2024-01-09 3

YA CC(1) User Commands YACC(1)

%parse−param { argument-declaration }

By default, the parser accepts no parameters, e.g., yyparse(). Use this directive to add parameter

declarations for your customized parser.

%pure−parser

Most variables (other than yydebug and yynerrs) are allocated on the stack within yyparse, mak-

ing the parser reasonably reentrant.

%token−table

Make the parser’s names for tokens available in the yytname array. Howev er, yacc does not pre-

define “$end”, “$error” or “$undefined” in this array.

PORTABILITY
According to Robert Corbett,

Berkeley Yacc is an LALR(1) parser generator. Berkeley Yacc
has been made as compatible as possible with AT&T Yacc.
Berkeley Yacc can accept any input specification that
conforms to the AT&T Yacc documentation. Specifications
that take advantage of undocumented features of AT&T Yacc
will probably be rejected.

The rationale in

http://pubs.opengroup.org/onlinepubs/9699919799/utilities/yacc.html

documents some features of AT&T yacc which are no longer required for POSIX compliance.

That said, you may be interested in reusing grammar files with some other implementation which is not

strictly compatible with AT&T yacc. For instance, there is bison. Here are a few differences:

• Yacc accepts an equals mark preceding the left curly brace of an action (as in the original grammar file

ftp.y):

| STAT CRLF
= {

statcmd();
}

• Yacc and bison emit code in different order, and in particular bison makes forward reference to common

functions such as yylex, yyparse and yyerror without providing prototypes.

• Bison’s support for “%expect” is broken in more than one release. For best results using bison, delete

that directive.

• Bison has no equivalent for some of yacc’s command-line options, relying on directives embedded in the

grammar file.

• Bison’s “−y” option does not affect bison’s lack of support for features of AT&T yacc which were

deemed obsolescent.

• Yacc accepts multiple parameters with %lex−param and %parse−param in two forms

{type1 name1} {type2 name2} ...
{type1 name1, type2 name2 ...}

Bison accepts the latter (though undocumented), but depending on the release may generate bad code.

• Like bison, yacc will add parameters specified via %parse−param to yyparse, yyerror and (if config-

ured for back-tracking) to the destructor declared using %destructor. Bison puts the additional parame-

ters first for yyparse and yyerror but last for destructors. Yacc matches this behavior.

SEE ALSO
bison(1), btyacc(1), lex(1), flex(1), yacc(1)

Berkeley Yacc 2024-01-09 4

