
DIALOG(3) Library Functions Manual DIALOG(3)

NAME
dialog − widgets and utilities for the dialog program

SYNOPSIS
cc [flag ...] file ... -ldialog [library ...]

or
cc $(dialog-config --cflags) file ... $(dialog-config --libs)]

#include <dialog.h>

Dialog is a program that will let you present a variety of questions or display messages using dialog boxes
from a shell script. It is built from thedialog library, which consists of several widgets as well as utility
functions that are used by the widgets or the main program.

DESCRIPTION
This manpage documents the features from<dialog.h> which are likely to be important to developers
using the widgets directly. Some hints are also given for developing new widgets.

Here is adialog version ofHello World:
int main(void)
{

int status;
init_dialog(stdin, stdout);
status = dialog_yesno(

"Hello, in dialog-format",
"Hello World!",
0, 0);

end_dialog();
return status;

}

DEFINITIONS
Exit codes (passed back to the main program for its use) are defined with a "DLG_EXIT_prefix. The
efined constants can be mapped using environment variables as described indialog(1), e.g.,
DLG_EXIT_OKcorresponds to$DIALOG_OK.

Useful character constants which correspond to user input are named with the "CHR_" prefix, e.g.,
CHR_BACKSPACE.

Colors and video attributes are categorized and associated with settings in the configuration file (see the dis-
cussion of$DIALOGRCin dialog(1)). TheDIALOG_ATR(n)macro is used for defining the references to
the combined color and attribute tabledlg_color_table[].

Thedialog application passes its command-line parameters to the widget functions. Some of those param-
eters are single values, but some of the widgets accept data as an array of values. Thoseinclude check-
list/radiobox, menubox and formbox. When the--item-help option is given, an extra column of data is
expected. TheUSE_ITEM_HELP(), CHECKBOX_TAGS, MENUBOX_TAGS and FORMBOX_TAGS
macros are used to hide this difference from the calling application.

Most of the other definitions found in<dialog.h> are used for convenience in building the library or main
program. Theseinclude definitions based on the generated<dlg_config.h>header.

DATA STRUCTURES
All of the global data for thedialog library is stored in a few structures:DIALOG_STATE, DIALOG_VARS
and DIALOG_COLORS. The correspondingdialog_state, dialog_vars and dlg_color_table global vari-
ables should be initialized to zeros, and then populated with the data to use.A few of these must be
nonzero for the corresponding widgets to function.As as the case with function names, variables beginning
with "dialog_" are designed for use by the calling application while variables beginning with "dlg_" are
intended for lower levels, e.g., by thedialog library.

$Date: 2018/06/20 01:21:53 $ 1

DIALOG(3) Library Functions Manual DIALOG(3)

DIALOG_STATE
Thestatevariables aredialog’s working variables. Itinitializes those, uses them to manage the widgets.

.all_subwindows
This is a linked list of all subwindows created by the library. The dlg_del_window function uses this to
free storage for subwindows when deleting a window.

.all_windows
This is a linked list of all windows created by the library. Thedlg_del_window function uses this to locate
windows which may be redrawn after deleting a window.

.aspect_ratio
This corresponds to the command-line option "--aspect-ratio". Thevalue gives the application some con-
trol over the box dimensions when using auto sizing (specifying 0 for height and width). It represents
width / height. The default is 9, which means 9 characters wide to every 1 line high.

.finish_string
When set to true, this allows calls todlg_finish_string to discard the corresponding data which is created to
speed up layout computations for the given string parameter. Thegaugewidget uses this feature.

.getc_callbacks
This is set up inui_getc.cto record windows which must be polled for input, e.g., to handle the background
tailbox widget. One window is designated as the foreground or control window.

.getc_redirect
If the control window for DIALOG_STATE.getc_callbacksis closed, the list is transferred to this variable.
Closing all windows causes the application to exit.

.no_mouse
This corresponds to the command-line option "--no-mouse". If true,dialog will not initialize (and enable)
the mouse ininit_dialog.

.output
This is set in thedialog application to the stream on which the application and library functions may write
text results. Normally that is the standard error, since the curses library prefers to write its data to the stan-
dard output. Some scripts, trading portability for convenience, prefer to write results to the standard output,
e.g., by using the "--stdout" option.

.output_count
This is incremented bydlg_does_output, which is called by each widget that writes text to the output.The
dialog application uses that to decide if it should also write a separator, i.e.,DIALOG_STATE.separate_str,
between calls to each widget.

.pipe_input
This is set ininit_dialog to a stream which can be used by thegaugewidget, which must be the applica-
tion’s standard input.Thedialog application callsinit_dialog normally with input set to the standard input,
but optionally based on the "--input-fd " option. Sincethe application cannot read from a pipe (standard
input) and at the same time read the curses input from the standard input, it must allow for reopening the
latter from either a specific file descriptor, or directly from the terminal. The adjusted pipe stream value is
stored in this variable.

.screen_initialized
This is set ininit_dialog and reset inend_dialog. It is used to check if curses has been initialized, and if the
endwinfunction must be called on exit.

.screen_output
This is set ininit_dialog to the output stream used by the curses library. Normally that is the standard out-
put, unless that happens to not be a terminal (and ifinit_dialogcan successfully open the terminal directly).

.separate_str
This corresponds to the command-line option "--separate-widget". Thegiven string specifies a string that
will separate the output ondialog’s output from each widget. This is used to simplify parsing the result of

$Date: 2018/06/20 01:21:53 $ 2

DIALOG(3) Library Functions Manual DIALOG(3)

a dialog with several widgets. If this option is not given, the default separator string is a tab character.

.tab_len
This corresponds to the command-line option "--tab-len number". Specifythe number of spaces that a tab
character occupies if the "--tab-correct" option is given. Thedefault is 8.

.text_height
This text-formatting functions set this to the number of lines used for formatting a string.

It is used bydialog for the command-line options "--print-text-size" and "--print-text-only ".

.text_only
Dialog uses this in the command-line option "--print-text-only ".

The text-formatting functions (dlg_print_text , dlg_print_line , and dlg_print_autowrap) check this to
decide whether to print the formatted text todialog’s output or to the curses-display.

Also, dlg_auto_sizechecks the flag, allowing it to be used beforeinit_dialog is called.

.text_width
This text-formatting functions set this to the number of columns used for formatting a string.

It is used bydialog for the command-line options "--print-text-size" and "--print-text-only ".

.trace_output
This corresponds to the command-line option "--trace file". It is the file pointer to which trace messages
are written.

.use_colors
This is set ininit_dialog if the curses implementation supports color.

.use_scrollbar
This corresponds to the command-line option "--scrollbar". If true, draw a scrollbar to make windows
holding scrolled data more readable.

.use_shadow
This corresponds to the command-line option "--no-shadow". This is set ininit_dialog if the curses imple-
mentation supports color. If true, suppress shadows that would be drawn to the right and bottom of each
dialog box.

.visit_items
This corresponds to the command-line option "--visit-items". Modify the tab-traversal of the list-oriented
widgets (buildlist, checklist, radiobox, menubox, inputmenu, and treeview) to include the list of items as
one of the states. This is useful as a visual aid, i.e., the cursor position helps some users.

Thedialog application resets thedialog_varsdata before accepting options to invoke each widget. Most of
theDIALOG_VARSmembers are set directly fromdialog’s command-line options:

DIALOG_VARS
In contrast toDIALOG_STATE, the members ofDIALOG_VARS are set by command-line options in
dialog.

.ascii_lines
This corresponds to the command-line option "--ascii-lines. It causes line-drawing to be done with ASCII
characters, e.g., "+" and "-". SeeDIALOG_VARS.no_lines.

.backtitle
This corresponds to the command-line option "--backtitle backtitle". It specifies abacktitle string to be
displayed on the backdrop, at the top of the screen.

.beep_after_signal
This corresponds to the command-line option "--beep-after". If true, beep after a user has completed a
widget by pressing one of the buttons.

$Date: 2018/06/20 01:21:53 $ 3

DIALOG(3) Library Functions Manual DIALOG(3)

.beep_signal
This corresponds to the command-line option "--beep". It is obsolete.

.begin_set
This is true if the command-line option "--begin y x" was used. It specifies the position of the upper left
corner of a dialog box on the screen.

.begin_x
This corresponds to thex value from the command-line option "--beginy x" (second value).

.begin_y
This corresponds to they value from the command-line option "--beginy x" (first value).

.cancel_label
This corresponds to the command-line option "--cancel-labelstring". Thegiven string overrides the label
used for “Cancel” buttons.

.cant_kill
This corresponds to the command-line option "--no-kill ". If true, this tellsdialog to put thetailboxbg box
in the background, printing its process id todialog’s output. SIGHUPis disabled for the background
process.

.colors
This corresponds to the command-line option "--colors". If true, interpret embedded "\Z" sequences in the
dialog text by the following character, which tellsdialog to set colors or video attributes: 0 through 7 are
the ANSI codes used in curses: black, red, green, yellow, blue, magenta, cyan and white respectively. Bold
is set by ’b’, reset by ’B’.Reverse is set by ’r’, reset by ’R’. Underline is set by ’u’, reset by ’U’. The set-
tings are cumulative, e.g., "\Zb\Z1" makes the following text bright red. Restore normal settings with
"\Zn".

.column_separator
This corresponds to the command-line option "--column-separator". Dialog splits data for radio/check-
boxes and menus on the occurrences of the given string, and aligns the split data into columns.

.cr_wrap
This corresponds to the command-line option "--cr-wrap ". If true, interpret embedded newlines in the dia-
log text as a newline on the screen.Otherwise,dialog will only wrap lines where needed to fit inside the
text box. Even though you can control line breaks with this,dialog will still wrap any lines that are too
long for the width of the box.Without cr-wrap, the layout of your text may be formatted to look nice in the
source code of your script without affecting the way it will look in the dialog.

.date_format
This corresponds to the command-line option "--date-format string". If the host providesstrftime , and the
value is nonnull, the calendar widget uses this to format its output.

.default_button
This is set by the command-line option "--default-button. It is used bydlg_default_button.

.default_item
This corresponds to the command-line option "--default-item string". The given string is used as the
default item in a checklist, form or menu box. Normally the first item in the box is the default.

.defaultno
This corresponds to the command-line option "--defaultno". If true, make the default value of theyes/no
box aNo. Likewise, treat the default button of widgets that provide “OK” and “Cancel” as aCancel. If
--nocancelwas giv en that option overrides this, making the default button always “Yes” (internally the
same as “OK”).

.dlg_clear_screen
This corresponds to the command-line option "--clear". This option is implemented in the main program,
not the library. If true, the screen will be cleared on exit. This may be used alone, without other options.

$Date: 2018/06/20 01:21:53 $ 4

DIALOG(3) Library Functions Manual DIALOG(3)

.exit_label
This corresponds to the command-line option "--exit-label string". The given string overrides the label
used for “EXIT” buttons.

.extra_button
This corresponds to the command-line option "--extra-button". If true, some widgets show an extra but-
ton, between “OK” and “Cancel” buttons.

.extra_label
This corresponds to the command-line option "--extra-label string". The given string overrides the label
used for “Extra” buttons. Note:for inputmenu widgets, this defaults to “Rename”.

.formitem_type
This is set by the command-line option "--passwordform" to tell the form widget that its text fields should
be treated like password widgets.

.help_button
This corresponds to the command-line option "--help-button". If true, some widgets show a help-button
after “OK” and “Cancel” buttons, i.e., in checklist, radiolist and menu boxes. If --item-help is also given,
on exit the return status will be the same as for the “OK” button, and the item-help text will be written to
dialog’s output after the token “HELP”. Otherwise, the return status will indicate that the Help button was
pressed, and no message printed.

.help_file
This corresponds to the command-line option "--hfile string". Thegiven filename is passed todialog_help-
file when the user presses F1.

.help_label
This corresponds to the command-line option "--help-label string". The given string overrides the label
used for “Help” buttons.

.help_line
This corresponds to the command-line option "--hline string". Thegiven string is displayed in the bottom
of dialog windows, like a subtitle.

.help_status
This corresponds to the command-line option "--help-status". If true, and the the help-button is selected,
writes the checklist or radiolist information after the item-help “HELP” information.This can be used to
reconstruct the state of a checklist after processing the help request.

.help_tags
This corresponds to the command-line option "--help-tags". If true, dlg_add_help_formitem and
dlg_add_help_listitem use the item’s tag value consistently rather than using the tag’s help-text value
whenDIALOG_VARS.item_helpis set.

.input_length
This is nonzero ifDIALOG_VARS.input_resultis allocated, versus being a pointer to the user’s local vari-
ables.

.input_menu
This flag is set to denote whether the menubox widget implements a menu versus a inputmenu widget.

.input_result
This may be either a user-supplied buffer, or a buffer dynamically allocated by the library, depending on
DIALOG_VARS.input_length:

• If DIALOG_VARS.input_lengthis zero, this is a pointer to user buffer (on the stack, or static). The buffer
size is assumed to beMAX_LEN , which is defined in<dialog.h>.

• WhenDIALOG_VARS.input_lengthis nonzero, this is a dynamically-allocated buffer used by the wid-
gets to return printable results to the calling application.

Certain widgets copy a result to this buffer. If the pointer is NULL, or if the length is insufficient for the

$Date: 2018/06/20 01:21:53 $ 5

DIALOG(3) Library Functions Manual DIALOG(3)

result, then the dialog library allocates a buffer which is large enough, and setsDIA-
LOG_VARS.input_length. Callers should check for this case if they hav esupplied their own buffer.

.insecure
This corresponds to the command-line option "--insecure". If true, make the password widget friendlier
but less secure, by echoing asterisks for each character.

.in_helpfile
This variable is used to prevent dialog_helpfile from showing anything, e.g., if F1 were pressed within a
help-file display.

.iso_week
This corresponds to the command-line option "--iso-week". It is used in the calendar widget to tell how to
compute the starting week for the year:

• by default, the calendar treats January 1 as the first week of the year.

• If this variable is true, the calendar uses ISO 8601’s convention. ISO8601 numbers weeks starting with
the first week in January with a Thursday in the current year. January 1 may be in thepreviousyear.

.item_help
This corresponds to the command-line option "--item-help". If true, interpret the tags data for checklist,
radiolist and menu boxes adding a column whose text is displayed in the bottom line of the screen, for the
currently selected item.

.keep_tite
This is set by the command-line option "--keep-tite" to tell dialog to not attempt to cancel the terminal ini-
tialization (termcapti /te) sequences which correspond to xterm’s alternate-screen switching.Normallydia-
log does this to avoid flickering when run several times in a script.

.keep_window
This corresponds to the command-line option "--keep-window". If true, do not remove/repaint the window
on exit. This is useful for keeping the window contents visible when several widgets are run in the same
process. Notethat curses will clear the screen when starting a new process.

.last_key
This corresponds to the command-line option "--last-key".

.max_input
This corresponds to the command-line option "--max-input size". Limit input strings to the given size. If
not specified, the limit is 2048.

.no_items
This corresponds to the command-line option "--no-items". Somewidgets (checklist, inputmenu, radiolist,
menu) display a list with two columns (a “tag” and “item”, i.e., “description”).This tellsdialog to read
shorter rows from data, omitting the “list”.

.no_label
This corresponds to the command-line option "--no-label string". Thegiven string overrides the label used
for “No” buttons.

.no_lines
This corresponds to the command-line option "--no-lines. It suppresses line-drawing. See DIA-
LOG_VARS.ascii_lines.

.no_nl_expand
This corresponds to the command-line option "--no-nl-expand". If false,dlg_trim_string converts literal
"\n" substrings in a message into newlines.

.no_tags
This corresponds to the command-line option "--no-tags". Somewidgets (checklist, inputmenu, radiolist,
menu) display a list with two columns (a “tag” and “item”, also known as “description”). The tag is useful
for scripting, but may not help the user. The --no-tagsoption (from Xdialog) may be used to suppress the

$Date: 2018/06/20 01:21:53 $ 6

DIALOG(3) Library Functions Manual DIALOG(3)

column of tags from the display.

Normally dialog allows you to quickly move to entries on the displayed list, by matching a single character
to the first character of the tag. When the--no-tagsoption is given, dialog matches against the first charac-
ter of the description. In either case, the matchable character is highlighted.

Here is a table showing how the no_tags and no_items values interact:

Widget FieldsShown Fields Read .no_items .no_tags

buildlist item tag,item 0 0*
buildlist item tag,item 0 1
buildlist tag tag 1 0*
buildlist tag tag 1 1
checklist tag,item tag,item 0 0
checklist item tag,item 0 1
checklist tag tag 1 0
checklist tag tag 1 1
inputmenu tag,item tag,item 0 0
inputmenu item tag,item 0 1
inputmenu tag tag 1 0
inputmenu tag tag 1 1
menu tag,item tag,item 0 0
menu item tag,item 0 1
menu tag tag 1 0
menu tag tag 1 1
radiolist tag,item tag,item 0 0
radiolist item tag,item 0 1
radiolist tag tag 1 0
radiolist tag tag 1 1
treeview item tag,item 0 0*
treeview item tag,item 0 1
treeview tag tag 1 0*
treeview tag tag 1 1

* Xdialog does not display the tag column for the analogous buildlist and treeview widgets. Dialog does
the same on the command-line.However the library interface defaults to displaying the tag column.
Your application can enable or disable the tag column as needed for each widget.

.nocancel
This corresponds to the command-line option "--no-cancel". If true, suppress the “Cancel” button in
checklist, inputbox and menu box modes.A script can still test if the user pressed the ESC key to cancel to
quit.

.nocollapse
This corresponds to the command-line option "--no-collapse". Normallydialog converts tabs to spaces and
reduces multiple spaces to a single space for text which is displayed in a message boxes, etc. It true, that
feature is disabled. Note thatdialog will still wrap text, subject to the--cr-wrap option.

.nook
This corresponds to the command-line option "--nook. Dialog will suppress the “ok” (or “yes”) button
from the widget.

.ok_label
This corresponds to the command-line option "--ok-label string". Thegiven string overrides the label used
for “OK” buttons.

.print_siz
This corresponds to the command-line option "--print-size". If true, each widget prints its size todialog’s
output when it is invoked.

$Date: 2018/06/20 01:21:53 $ 7

DIALOG(3) Library Functions Manual DIALOG(3)

.quoted
This corresponds to the command-line option "--quoted. Normally dialog quotes the strings returned by
checklist’s as well as the item-help text. If true,dialog will quote all string results.

.reorder
This corresponds to the command-line option "--reorder. By default, the buildlist widget uses the same
order for the output (right) list as for the input (left). If true,dialog will use the order in which a user adds
selections to the output list.

.separate_output
This corresponds to the command-line option "--separate-output". If true, checklist widgets output result
one line at a time, with no quoting. This facilitates parsing by another program.

.single_quoted
This corresponds to the command-line option "--single-quoted". If true, use single-quoting as needed (and
no quotes if unneeded) for the output of checklist’s as well as the item-help text. If this option is not set,
dialog uses double quotes around each item.The latter requires occasional use of backslashes to make the
output useful in shell scripts.

.size_err
This corresponds to the command-line option "--size-err". If true, check the resulting size of a dialog box
before trying to use it, printing the resulting size if it is larger than the screen. (This option is obsolete,
since all new-window calls are checked).

.sleep_secs
This corresponds to the command-line option "--sleepsecs". This option is implemented in the main pro-
gram, not the library. If nonzero, this is the number of seconds after to delay after processing a dialog box.

.tab_correct
This corresponds to the command-line option "--tab-correct". If true, convert each tab character of the text
to one or more spaces. Otherwise, tabs are rendered according to the curses library’s interpretation.

.time_format
This corresponds to the command-line option "--time-format string". If the host provides strftime , and
the value is nonnull, the timebox widget uses this to format its output.

.timeout_secs
This corresponds to the command-line option "--timeout secs". If nonzero, timeout input requests (exit
with error code) if no user response within the given number of seconds.

.title
This corresponds to the command-line option "--title title". Specifiesa title string to be displayed at the top
of the dialog box.

.trim_whitespace
This corresponds to the command-line option "--trim ". If true, eliminate leading blanks, trim literal new-
lines and repeated blanks from message text.

.week_start
This corresponds to the command-line option "--week-start". It is used in the calendar widget to set the
starting day for the week. The string value can be

• a number (0 to 6, Sunday through Saturday using POSIX) or

• the special value “locale” (this works with systems using glibc, providing an extension to thelocalecom-
mand, thefirst_weekdayvalue).

• a string matching one of the abbreviations for the day of the week shown in thecalendar widget, e.g.,
“Mo” for “Monday”.

.yes_label
This corresponds to the command-line option "--yes-labelstring". Thegiven string overrides the label used
for “Yes” buttons.

$Date: 2018/06/20 01:21:53 $ 8

DIALOG(3) Library Functions Manual DIALOG(3)

WIDGETS
Functions that implement major functionality for the command-linedialog program, e.g., widgets, have
names beginning "dialog_".

All dialog boxes have at least three parameters:

title the caption for the box, shown on its top border.

height
the height of the dialog box.

width
the width of the dialog box.

Other parameters depend on the box type.

dialog_buildlist
implements the "--buildlist " option.

const char * title
is the title on the top of the widget.

const char *cprompt
is the prompt text shown within the widget.

int height
is the desired height of the box. If zero, the height is adjusted to use the available screen size.

int width
is the desired width of the box. If zero, the height is adjusted to use the available screen size.

int list_height
is the minimum height to reserve for displaying the list. If zero, it is computed based on the given
heightandwidth.

int item_no
is the number of rows initems.

char ** items
is an array of strings which is viewed either as a list of rows
tag item status

or
tag item status help

depending on whetherdialog_vars.item_helpis set.

int order_mode
is reserved for future enhancements

dialog_calendar
implements the "--calendar" option.

const char * title
is the title on the top of the widget.

const char *subtitle
is the prompt text shown within the widget.

int height
is the height excluding the fixed-height calendar grid.

int width
is the overall width of the box, which is adjusted up to the calendar grid’s minimum width if needed.

int day
is the initial day of the week shown, counting zero as Sunday. If the value is negative, the current day
of the week is used.

$Date: 2018/06/20 01:21:53 $ 9

DIALOG(3) Library Functions Manual DIALOG(3)

int month
is the initial month of the year shown, counting one as January. If the value is negative, the current
month of the year is used.

int year
is the initial year shown. If the value is negative, the current year is used.

dialog_checklist
implements the "--checklist" and "--radiolist " options depending on theflagparameter.

const char * title
is the title on the top of the widget.

const char *cprompt
is the prompt text shown within the widget.

int height
is the desired height of the box. If zero, the height is adjusted to use the available screen size.

int width
is the desired width of the box. If zero, the height is adjusted to use the available screen size.

int list_height
is the minimum height to reserve for displaying the list. If zero, it is computed based on the given
heightandwidth.

int item_no
is the number of rows initems.

int items
is an array of strings which is viewed either as a list of rows
tag item status

or
tag item status help

depending on whetherdialog_vars.item_helpis set.

flag is eitherFLAG_CHECK, for checklists, orFLAG_RADIOfor radiolists.

dialog_dselect
implements the "--dselect" option.

const char * title
is the title on the top of the widget.

const char *path
is the preselected value to show in the input-box, which is used also to set the directory- and file-win-
dows.

int height
is the height excluding the minimum needed to show the dialog box framework. If zero, the height is
based on the screen size.

int width
is the desired width of the box. If zero, the height is based on the screen size.

dialog_editbox
implements the "--editbox" option.

const char * title
is the title on the top of the widget.

const char *file
is the name of the file from which to read.

$Date: 2018/06/20 01:21:53 $ 10

DIALOG(3) Library Functions Manual DIALOG(3)

int height
is the desired height of the box. If zero, the height is adjusted to use the available screen size.

int width
is the desired width of the box. If zero, the height is adjusted to use the available screen size.

dialog_form
implements the "--form " option.

const char * title
is the title on the top of the widget.

const char *cprompt
is the prompt text shown within the widget.

int height
is the desired height of the box. If zero, the height is adjusted to use the available screen size.

int width
is the desired width of the box. If zero, the height is adjusted to use the available screen size.

int form_height
is the minimum height to reserve for displaying the list. If zero, it is computed based on the given
heightandwidth.

int item_no
is the number of rows initems.

int items
is an array of strings which is viewed either as a list of rows
Name NameY NameX Text TextY TextX FLen ILen

or
Name NameY NameX Text TextY TextX FLen ILen Help

depending on whetherdialog_vars.item_helpis set.

dialog_fselect
implements the "--fselect" option.

const char * title
is the title on the top of the widget.

const char *path
is the preselected value to show in the input-box, which is used also to set the directory- and file-win-
dows.

int height
is the height excluding the minimum needed to show the dialog box framework. If zero, the height is
based on the screen size.

int width
is the desired width of the box. If zero, the height is based on the screen size.

dialog_gauge
implements the "--gauge" option. Alternatively, a simpler or customized gauge widget can be set up using
dlg_allocate_gauge, dlg_reallocate_gauge, dlg_update_gaugeanddlg_free_gauge.

const char * title
is the title on the top of the widget.

const char *cprompt
is the prompt text shown within the widget.

$Date: 2018/06/20 01:21:53 $ 11

DIALOG(3) Library Functions Manual DIALOG(3)

int height
is the desired height of the box. If zero, the height is based on the screen size.

int width
is the desired width of the box. If zero, the height is based on the screen size.

int percent
is the percentage to show in the progress bar.

dialog_inputbox
implements the "--inputbox" or "--password" option, depending on the value ofpassword.

const char * title
is the title on the top of the widget.

const char *cprompt
is the prompt text shown within the widget.

int height
is the desired height of the box. If zero, the height is based on the screen size.

int width
is the desired width of the box. If zero, the height is based on the screen size.

const char * init
is the initial value of the input box, whose length is taken into account when auto-sizing the width of
the dialog box.

int password
if true, causes typed input to be echoed as asterisks.

dialog_helpfile
implements the "--hfile" option.

const char * title
is the title on the top of the widget.

const char *file
is the name of a file containing the text to display. This function is internally bound to F1 (function
key “1”), passingdialog_vars.help_fileas a parameter. Thedialog program sets that variable when
the--hfile option is given.

int height
is the desired height of the box. If zero, the height is based on the screen size.

int width
is the desired width of the box. If zero, the height is based on the screen size.

dialog_menu
implements the "--menu" or "--inputmenu" option depending on whetherdialog_vars.input_menuis set.

const char * title
is the title on the top of the widget.

const char *cprompt
is the prompt text shown within the widget.

int height
is the desired height of the box. If zero, the height is based on the screen size.

int width
is the desired width of the box. If zero, the height is based on the screen size.

int menu_height
is the minimum height to reserve for displaying the list. If zero, it is computed based on the given
heightandwidth.

$Date: 2018/06/20 01:21:53 $ 12

DIALOG(3) Library Functions Manual DIALOG(3)

int item_no
is the number of rows initems.

int items
is an array of strings which is viewed either as a list of rows
tag item

or
tag item help

depending on whetherdialog_vars.item_helpis set.

dialog_mixedform
implements the "--mixedform" option.

const char * title
is the title on the top of the widget.

const char *cprompt
is the prompt text shown within the widget.

int height
is the desired height of the box. If zero, the height is adjusted to use the available screen size.

int width
is the desired width of the box. If zero, the height is adjusted to use the available screen size.

int form_height
is the minimum height to reserve for displaying the list. If zero, it is computed based on the given
heightandwidth.

int item_no
is the number of rows initems.

int items
is an array of strings which is viewed either as a list of rows
Name NameY NameX Text TextY TextX FLen ILen Ityp

or
Name NameY NameX Text TextY TextX FLen ILen Ityp Help

depending on whetherdialog_vars.item_helpis set.

dialog_mixedgauge
implements the "--mixedgauge" option

const char * title
is the title on the top of the widget.

const char *cprompt
is the caption text shown within the widget.

int height
is the desired height of the box. If zero, the height is based on the screen size.

int width
is the desired width of the box. If zero, the height is based on the screen size.

int percent
is the percentage to show in the progress bar.

int item_no
is the number of rows initems.

int items
is an array of strings which is viewed as a list oftag and itemvalues. Thetag values are listed, one
per row, in the list at the top of the widget.

$Date: 2018/06/20 01:21:53 $ 13

DIALOG(3) Library Functions Manual DIALOG(3)

The itemvalues are decoded: digits 0 through 9 are the following strings

0 Succeeded

1 Failed

2 Passed

3 Completed

4 Checked

5 Done

6 Skipped

7 In Progress

8 (blank)

9 N/A

A string with a leading "-" character is centered, marked with "%". For example, "-75" is displayed
as "75%". Other strings are displayed as is.

dialog_msgbox
implements the "--msgbox" or "--infobox" option depending on whetherpauseoptis set.

const char * title
is the title on the top of the widget.

const char *cprompt
is the prompt text shown within the widget.

int height
is the desired height of the box. If zero, the height is based on the screen size.

int width
is the desired width of the box. If zero, the height is based on the screen size.

int pauseopt
if true, an “OK” button will be shown, and the dialog will wait for it to complete.With an “OK” but-
ton, it is denoted a “msgbox”, without an “OK” button, it is denoted an “infobox”.

dialog_pause
implements the "--pause" option.

const char * title
is the title on the top of the widget.

int height
is the desired height of the box. If zero, the height is based on the screen size.

int width
is the desired width of the box. If zero, the height is based on the screen size.

int seconds
is the timeout to use for the progress bar.

dialog_prgbox
implements the "--prgbox" option.

const char * title
is the title on the top of the widget.

const char *cprompt
is the prompt text shown within the widget. If empty or null, no prompt is shown.

$Date: 2018/06/20 01:21:53 $ 14

DIALOG(3) Library Functions Manual DIALOG(3)

const char *command
is the name of the command to execute.

int height
is the desired height of the box. If zero, the height is based on the screen size.

int width
is the desired width of the box. If zero, the height is based on the screen size.

int pauseopt
if true, an “OK” button will be shown, and the dialog will wait for it to complete.

dialog_progressbox
implements the "--progressbox" option.

const char * title
is the title on the top of the widget.

const char *cprompt
is the prompt text shown within the widget. If empty or null, no prompt is shown.

int height
is the desired height of the box. If zero, the height is based on the screen size.

int width
is the desired width of the box. If zero, the height is based on the screen size.

dialog_rangebox
implements the "--rangebox" option.

const char * title
is the title on the top of the widget.

const char *cprompt
is the prompt text shown within the widget. If empty or null, no prompt is shown.

int height
is the desired height of the widget. If zero, the height is based on the screen size.

int width
is the desired width of the widget. If zero, the height is based on the screen size.

int min_value
is the minimum value to allow.

int max_value
is the maximum value to allow.

int default_value
is the default value, if no change is made.

dialog_tailbox
implements the "--tailbox" or "--tailboxbg" option depending on whetherbg_taskis set.

const char * title
is the title on the top of the widget.

const char *file
is the name of the file to display in the dialog.

int height
is the desired height of the box. If zero, the height is based on the screen size.

int width
is the desired width of the box. If zero, the height is based on the screen size.

$Date: 2018/06/20 01:21:53 $ 15

DIALOG(3) Library Functions Manual DIALOG(3)

int bg_task
if true, the window is added to the callback list indialog_state, and the application will poll for the
window to be updated. Otherwisean “OK” button is added to the window, and it will be closed when
the button is activated.

dialog_textbox
implements the "--textbox" option.

const char * title
is the title on the top of the widget.

const char *file
is the name of the file to display in the dialog.

int height
is the desired height of the box. If zero, the height is based on the screen size.

int width
is the desired width of the box. If zero, the height is based on the screen size.

dialog_timebox
implements the "--timebox" option.

const char * title
is the title on the top of the widget.

const char *subtitle
is the prompt text shown within the widget.

int height
is the desired height of the box. If zero, the height is based on the screen size.

int width
is the desired width of the box. If zero, the height is based on the screen size.

int hour
is the initial hour shown. If the value is negative, the current hour is used.Returns
DLG_EXIT_ERROR if the value specified is greater than or equal to 24.

int minute
is the initial minute shown. If the value is negative, the current minute is used.Returns
DLG_EXIT_ERROR if the value specified is greater than or equal to 60.

int second
is the initial second shown. If the value is negative, the current second is used.Returns
DLG_EXIT_ERROR if the value specified is greater than or equal to 60.

dialog_treeview
implements the "--treeview" option.

const char * title
is the title on the top of the widget.

const char *cprompt
is the prompt text shown within the widget.

int height
is the desired height of the box. If zero, the height is based on the screen size.

int width
is the desired width of the box. If zero, the height is based on the screen size.

int list_height
is the minimum height to reserve for displaying the list. If zero, it is computed based on the given
heightandwidth.

$Date: 2018/06/20 01:21:53 $ 16

DIALOG(3) Library Functions Manual DIALOG(3)

int item_no
is the number of rows initems.

char ** items
is the list of items, contain tag, name, and optionally help strings (ifdialog_vars.item_helpis set).
The initial selection state for each item is also in this list.

int flag

flag is eitherFLAG_CHECK, for checklists (multiple selections), orFLAG_RADIOfor radiolists (a single
selection).

dialog_yesno
implements the "--yesno" option.

const char * title
is the title on the top of the widget.

const char *cprompt
is the prompt text shown within the widget.

int height
is the desired height of the box. If zero, the height is based on the screen size.

int width
is the desired width of the box. If zero, the height is based on the screen size.

UTILITY FUNCTIONS
Most functions that implement lower-level functionality for the command-linedialog program or widgets,
have names beginning "dlg_". Bowing to longstanding usage, the functions that initialize the display and
end it are namedinit_dialogandend_dialog.

The only non-widget function whose name begins with "dialog_" is dialog_version, which returns the ver-
sion number of the library as a string.

Here is a brief summary of the utility functions and their parameters:

dlg_add_callback
Add a callback, used to allow polling input from multiple tailbox widgets.

DIALOG_CALLB ACK * p
contains the callback information.

dlg_add_callback_ref
Like dlg_add_callback, but passes a reference to theDIALOG_CALLB ACK as well as a pointer to a
cleanup function which will be called when the associated input ends.

DIALOG_CALLB ACK * *p
points to the callback information.This is a reference to the pointer so that the caller’s pointer can be
zeroed when input ends.

DIALOG_FREEB ACK func
function to call when input ends, e.g., to free caller’s additional data.

dlg_add_help_formitem
This is a utility function used enforce consistent behavior for theDIALOG_VARS.help_tagsand DIA-
LOG_VARS.item_helpvariables.

int * result
this is updated to DLG_EXIT_ITEM_HELP ifDIALOG_VARS.item_helpis set.

char ** tag
the tag- or help-text is stored here.

$Date: 2018/06/20 01:21:53 $ 17

DIALOG(3) Library Functions Manual DIALOG(3)

DIALOG_FORMITEM * item
contains the list item to use for tag- or help-text.

dlg_add_help_listitem
This is a utility function used enforce consistent behavior for the DIALOG_VARS.help_tagsand DIA-
LOG_VARS.item_helpvariables.

int * result
this is updated to DLG_EXIT_ITEM_HELP ifDIALOG_VARS.item_helpis set.

char ** tag
the tag- or help-text is stored here.

DIALOG_LISTITEM * item
contains the list item to use for tag- or help-text.

dlg_add_last_key
Report the last key entered by the user. This implements the--last-key command-line option, usingdia-
log_vars.last_key.

int mode
controls the way the last key report is separated from other results:

-2 (no separator)

-1 (separator after the key name)

0 (separator is optionally before the key name)

1 (same as -1)

dlg_add_quoted
Add a quoted string to the result buffer (seedlg_add_result). If no quotes are necessary, none are used.If
dialog_vars.single_quotedis set, single-quotes are used. Otherwise, double-quotes are used.

char * string
is the string to add.

dlg_add_result
Add a string to the result bufferdialog_vars.input_result.

char * string
is the string to add.

dlg_add_separator
Add an output-separator to the result buffer dialog_vars.input_result. If dialog_vars.output_separatoris
set, use that. Otherwise, ifdialog_vars.separate_outputis set, use newline. If neither is set, use a space.

dlg_add_string
Add a quoted or unquoted string to the result buffer (seedlg_add_quoted) and dlg_add_result), according
to whetherdialog_vars.quotedis true.

char * string
is the string to add.

dlg_align_columns
Copy and reformat an array of pointers to strings, aligning according to the column separatordia-
log_vars.column_separator. If no column separator is set, the array will be unmodified; otherwise it is
copied and reformatted.

Caveat: This function is only implemented for 8-bit characters.

char ** target
This is the array to reformat. It points to the first string to modify.

$Date: 2018/06/20 01:21:53 $ 18

DIALOG(3) Library Functions Manual DIALOG(3)

int per_row
This is the size of the struct for each row of the array.

int num_rows
This is the number of rows in the array.

dlg_allocate_gauge
Allocates a gauge widget. Usedlg_update_gaugeto display the result.

const char * title
is the title string to display at the top of the widget.

const char *cprompt
is the prompt text shown within the widget.

int height
is the desired height of the box. If zero, the height is adjusted to use the available screen size.

int width
is the desired width of the box. If zero, the height is adjusted to use the available screen size.

int percent
is the percentage to show in the progress bar.

dlg_asciibox
returns its parameter transformed to the corresponding "+" or "-", etc., for the line-drawing characters used
in dialog. If the parameter is not a line-drawing or other special character such as ACS_DARROW, it
returns 0.

chtypech
is the parameter, usually one of theACS_xxxconstants.

dlg_attr_clear
Set window to the given attribute.

WINDOW * win
is the window to update.

int height
is the number of rows to update.

int width
is the number of columns to update.

chtypeattr
is the attribute, e.g.,A_BOLD .

dlg_auto_size
Compute window size based on the size of the formattedpromptand minimum dimensions for a given wid-
get.

Dialog setsdialog_state.text_heightand dialog_state.text_width for the formattedprompt as a side-
effect.

Normally dialog writes the formattedpromptto the curses window, but it will write the formattedpromptto
the output stream ifdialog_state.text_onlyis set.

const char * title
is the title string to display at the top of the widget.

const char *prompt
is the message text which will be displayed in the widget, used here to determine how large the wid-
get should be.

If the value isNULL, dialog allows the widget to use the whole screen, i.e., if the values referenced
by heightand/orwidthare zero.

$Date: 2018/06/20 01:21:53 $ 19

DIALOG(3) Library Functions Manual DIALOG(3)

int * height
is the nominal height.Dialog checks the referenced value and may update it:

• if the value is negative, dialog updates it to the available height of the screen, after reserving rows
for the window border and shadow, as well as taking into accountdialog_vars.begin_yanddia-
log_vars.begin_set.

• if the value is zero,dialog updates it to the required height of the window, taking into account a
(possibly) multi-lineprompt.

• if the value is greater than zero,dialog uses it internally, but restores the value on return.

int * width
is the nominal width.Dialog checks the referenced value and may update it:

• if the value is negative, dialog updates it to the available width of the screen, after reserving rows
for the window border and shadow, as well as taking into accountdialog_vars.begin_xanddia-
log_vars.begin_set.

• if the value is zero,dialog updates it to the required width of the window, taking into account a
(possibly) multi-lineprompt.

• if the value is greater than zero,dialog uses it internally, but restores the value on return.

int boxlines
is the number of lines to reserve in the vertical direction.

int mincols
is the minimum number of columns to use.

dlg_auto_sizefile
Like dlg_auto_size, but use a file contents to decide how large the widget should be.

const char * title
is the title string to display at the top of the widget.

const char *file
is the name of the file.

int * height
is the nominal height.

If it is -1, use the screen’s height (after subtractingdialog_vars.begin_yif dialog_vars.begin_setis
true).

If it is greater than zero, limit the referenced value to the screen-height after verifying that the file
exists.

int * width
is the nominal width.

If it is -1, use the screen’s width (after subtractingdialog_vars.begin_xif dialog_vars.begin_setis
true).

If it is greater than zero, limit the referenced value to the screen-width after verifying that the file
exists.

int boxlines
is the number of lines to reserve on the screen for drawing boxes.

int mincols
is the number of columns to reserve on the screen for drawing boxes.

dlg_beeping
If dialog_vars.beep_signalis nonzero, this callsbeeponce and setsdialog_vars.beep_signalto zero.

$Date: 2018/06/20 01:21:53 $ 20

DIALOG(3) Library Functions Manual DIALOG(3)

dlg_boxchar
returns itschtypeparameter transformed as follows:

• if neitherdialog_vars.ascii_linesnordialog_vars.no_linesis set.

• if dialog_vars.ascii_linesis set, returns the corresponding "+" or "-", etc., for the line-drawing characters
used indialog.

• otherwise, ifdialog_vars.no_linesis set, returns a space for the line-drawing characters.

• if the parameter is not a line-drawing or other special character such as ACS_DARROW, it returns the
parameter unchanged.

dlg_box_x_ordinate
returns a suitable x-ordinate (column) for a new widget. If dialog_vars.begin_setis 1, usedia-
log_vars.begin_x; otherwise center the widget on the screen (using thewidthparameter).

int width
is the width of the widget.

dlg_box_y_ordinate
returns a suitable y-ordinate (row) for a new widget. If dialog_vars.begin_set is 1, use dia-
log_vars.begin_y; otherwise center the widget on the screen (using theheightparameter).

int height
is the height of the widget.

dlg_buildlist
This is an alternate interface to thebuildlist widget which allows the application to read the list item states
back directly without putting them in the output buffer.

const char * title
is the title string to display at the top of the widget.

const char *cprompt
is the prompt text shown within the widget.

int height
is the desired height of the box. If zero, the height is adjusted to use the available screen size.

int width
is the desired width of the box. If zero, the height is adjusted to use the available screen size.

int list_height
is the minimum height to reserve for displaying the list. If zero, it is computed based on the given
heightandwidth.

int item_no
is the number of rows initems.

DIALOG_LISTITEM * items
is the list of items, contain tag, name, and optionally help strings (ifdialog_vars.item_helpis set).
The initial selection state for each item is also in this list.

const char *states
This is a list of characters to display for the given states. Normallya buildlist provides true (1) and
false (0) values, which the widget displays as "*" and space, respectively. An application may set
this parameter to an arbitrary null-terminated string.The widget determines the number of states
from the length of this string, and will cycle through the corresponding display characters as the user
presses the space-bar.

int order_mode
is reserved for future enhancements

$Date: 2018/06/20 01:21:53 $ 21

DIALOG(3) Library Functions Manual DIALOG(3)

int * current_item
The widget sets the referenced location to the index of the current display item (cursor) when it
returns.

dlg_button_count
Count the buttons in the list.

const char ** labels
is a list of (pointers to) button labels terminated by a null pointer.

dlg_button_layout
Make sure there is enough space for the buttons by computing the width required for their labels, adding
margins and limiting based on the screen size.

const char ** labels
is a list of (pointers to) button labels terminated by a null pointer.

int * limit
the function sets the referencedlimit to the width required for the buttons (limited by the screen size)
if that is wider than the passed-in limit.

dlg_button_sizes
Compute the size of the button array in columns.

const char ** labels
is a list of (pointers to) button labels terminated by a null pointer.

int vertical
is true if the buttons are arranged in a column rather than a row.

int * longest
Return the total number of columns in the referenced location.

int * length
Return the longest button’s columns in the referenced location.

dlg_button_to_char
Find the first uppercase character in the label, which we may use for an abbreviation. If the label is empty,
return -1. If no uppercase character is found, return 0. Otherwise return the uppercase character.

Normally dlg_draw_buttons and dlg_char_to_button use the first uppercase character. Howev er, they
keep track of all of the labels and if the first has already been used in another label, they will continue look-
ing for another uppercase character. This function does not have enough information to make that check.

const char * label
is the label to test.

dlg_button_x_step
Compute the step-size needed between elements of the button array.

const char ** labels
is a list of (pointers to) button labels terminated by a null pointer.

int limit
is the maximum number of columns to allow for the buttons.

int * gap
store the nominal gap between buttons in the referenced location.This is constrained to be at least
one.

int * margin
store the left+right total margins (for the list of buttons) in the referenced location.

int * step
store the step-size in the referenced location.

$Date: 2018/06/20 01:21:53 $ 22

DIALOG(3) Library Functions Manual DIALOG(3)

dlg_calc_list_width
Calculate the minimum width for the list, assuming none of the items are truncated.

int item_no
is the number ofitems.

DIALOG_LISTITEM * items
contains anameandtextfield, e.g., for checklists or radiobox lists. The function returns the sum of
the widest columns needed for of each of these fields.

If dialog_vars.no_itemsis set, thetextfields in the list are ignored.

dlg_calc_listh
Calculate new height and list_height values.

int * height
on input, is the height without adding the list-height.On return, this contains the total list-height and
is the actual widget’s height.

int * list_height
on input, is the requested list-height. On return, this contains the number of rows available for dis-
playing the list after taking into account the screen size and thedialog_vars.begin_setand dia-
log_vars.begin_yvariables.

int item_no
is the number ofitemsin the list.

dlg_calc_listw
This function is obsolete, provided for library-compatibility. It is replaced bydlg_calc_list_width.

int item_no
is the number ofitems.

char ** items
is a list of character pointers.

int group
is the number of items in each group, e.g., the second array index.

dlg_char_to_button
Given a list of button labels, and a character which may be the abbreviation for one, find it, if it exists. An
abbreviation will be the first character which happens to be capitalized in the label. If the character is
found, return its index within the list oflabels. Otherwise, returnDLG_EXIT_UNKNOWN .

int ch
is the character to find.

const char ** labels
is a list of (pointers to) button labels terminated by a null pointer.

dlg_checklist
This entrypoint provides the--checklist or --radiolist functionality without the limitations ofdialog’s com-
mand-line syntax (compare todialog_checklist).

const char * title
is the title string to display at the top of the widget.

const char *cprompt
is the prompt text shown within the widget.

int height
is the desired height of the box. If zero, the height is adjusted to use the available screen size.

int width
is the desired width of the box. If zero, the height is adjusted to use the available screen size.

$Date: 2018/06/20 01:21:53 $ 23

DIALOG(3) Library Functions Manual DIALOG(3)

int list_height
is the minimum height to reserve for displaying the list. If zero, it is computed based on the given
heightandwidth.

int item_no
is the number ofitems.

DIALOG_LISTITEM * items
This is a list of the items to display in the checklist.

const char *states
This is a list of characters to display for the given states. Normallya checklist provides true (1) and
false (0) values, which the widget displays as "*" and space, respectively. An application may set
this parameter to an arbitrary null-terminated string.The widget determines the number of states
from the length of this string, and will cycle through the corresponding display characters as the user
presses the space-bar.

int flag
This is should be one ofFLAG_CHECK or FLAG_RADIO , depending on whether the widget
should act as a checklist or radiobox.

int * current_item
The widget sets the referenced location to the index of the current display item (cursor) when it
returns.

dlg_check_scrolled
given a function key (or other key that was mapped to a function key), check if it is one of the up/down
scrolling functions:

DLGK_PAGE_FIRST,
DLGK_PAGE_LAST,
DLGK_GRID_UP,
DLGK_GRID_DOWN,
DLGK_PAGE_PREV or
DLGK_PAGE_NEXT.

Some widgets use these key bindings for scrolling the prompt-text up and down, to allow for display in very
small windows.

The function returns 0 (zero) if it finds one of these keys, and -1 if not.

int key
is the function-key to check

int last
is the number of lines which would be used to display the scrolled prompt in an arbitrarily tall win-
dow. It is used here to check limits for theoffsetvalue.

int page
this is the available height for writing scrolled text, which is smaller than the window if it contains
buttons.

bool * show
on return, holds TRUE ifdlg_print_scrolled should be used to redisplay the prompt text.

int * offset
on entry, holds the starting line number (counting from zero) last used fordlg_print_scrolled. On
return, holds the updated starting line number.

dlg_clear
Set window to the defaultdialog screen attribute. Thisis set in the rc-file withscreen_color.

$Date: 2018/06/20 01:21:53 $ 24

DIALOG(3) Library Functions Manual DIALOG(3)

dlg_clr_result
Free storage used for the result buffer (dialog_vars.input_result). The corresponding pointer is set to
NULL.

dlg_color_count
Return the number of colors that can be configured indialog.

dlg_color_setup
Initialize the color pairs used indialog.

dlg_count_argv
Count the entries in an argument vector.

argv Points to the argument vector.

dlg_count_columns
Returns the number of columns used for a string. This is not necessarily the number of bytes in a string.

const char *string
is the string to measure.

dlg_count_real_columns
Returns the number of columns used for a string, accounting for "\Z" sequences which can be used for col-
oring the text ifdialog_vars.colorsis set. This is not necessarily the number of bytes in a string.

const char *string
is the string to measure.

dlg_count_wchars
Returns the number of wide-characters in the string.

const char *string
is the string to measure.

dlg_create_rc
Create a configuration file, i.e., write internal tables to a file which can be read back bydialog as an rc-file.

const char *filename
is the name of the file to write to.

dlg_ctl_size
If dialog_vars.size_erris true, check if the given window size is too large to fit on the screen. If so, exit
with an error reporting the size of the window.

int height
is the window’s height

int width
is the window’s width

dlg_default_button
If dialog_vars.default_button is positive, return the button-index for that button code, usingdlg_ok_but-
toncodeto test indices starting with zero. Otherwise (or if no match was found for the button code), return
zero.

dlg_default_formitem
If dialog_vars.default_itemis not null, find that name by matching thenamefield in the list of formitems.
If found, return the index of that item in the list. Otherwise, return zero.

DIALOG_FORMITEM * items
is the list of items to search. It is terminated by an entry with a nullnamefield.

dlg_default_item
This function is obsolete, provided for library-compatibility. It is replaced bydlg_default_formitem and
dlg_default_listitem.

$Date: 2018/06/20 01:21:53 $ 25

DIALOG(3) Library Functions Manual DIALOG(3)

char ** items
is the list of items to search.

int llen
is the number of items in each group, e.g., the second array index.

dlg_defaultno_button
If dialog_vars.defaultno is true, anddialog_vars.nocancelis not, find the button-index for the “Cancel”
button. Otherwise,return the index for “OK” (always zero).

dlg_del_window
Remove a window, repainting everything else.

WINDOW * win
is the window to remove.

dlg_does_output
This is called each time a widget is invoked which may do output. It incrementsdialog_state.out-
put_count, so the output function indialog can test this and add a separator.

dlg_draw_arrows
Draw up/down arrows on a window, e.g., for scrollable lists. It callsdlg_draw_arrows2 using the
menubox_colorandmenubox_border_colorattributes.

WINDOW * dialog
is the window on which to draw an arrow.

int top_arrow
is true if an up-arrow should be drawn at the top of the window.

int bottom_arrow
is true if an down-arrow should be drawn at the bottom of the window.

int x is the zero-based column within the window on which to draw arrows.

int top
is the zero-based row within the window on which to draw up-arrows as well as a horizontal line to
show the window’s top.

int bottom
is the zero-based row within the window on which to draw down-arrows as well as a horizontal line
to show the window’s bottom.

dlg_draw_arrows2
Draw up/down arrows on a window, e.g., for scrollable lists.

WINDOW * dialog
is the window on which to draw an arrow.

int top_arrow
is true if an up-arrow should be drawn at the top of the window.

int bottom_arrow
is true if an down-arrow should be drawn at the bottom of the window.

int x is the zero-based column within the window on which to draw arrows.

int top
is the zero-based row within the window on which to draw up-arrows as well as a horizontal line to
show the window’s top.

int bottom
is the zero-based row within the window on which to draw down-arrows as well as a horizontal line
to show the window’s bottom.

$Date: 2018/06/20 01:21:53 $ 26

DIALOG(3) Library Functions Manual DIALOG(3)

chtypeattr
is the window’s background attribute.

chtypeborderattr
is the window’s border attribute.

dlg_draw_bottom_box
Draw a partial box at the bottom of a window, e.g., to surround a row of buttons. Itis designed to merge
with an existing box around the whole window (seedlg_draw_box), so it uses tee-elements rather than
corner-elements on the top corners of this box.

WINDOW * win
is the window to update.

dlg_draw_bottom_box2
Draw a partial box at the bottom of a window, e.g., to surround a row of buttons. Itis designed to merge
with an existing box around the whole window (seedlg_draw_box2), so it uses tee-elements rather than
corner-elements on the top corners of this box.

WINDOW * win
is the window to update.

chtypeon_left
is used to color the upper/left edges of the box, i.e., the tee-element and horizontal line

chtypeon_right
is used to color the right edge of the box, i.e., the tee-element

chtypeon_inside
is used to fill-color the inside of the box

dlg_draw_box
Draw a rectangular box with line drawing characters.

WINDOW * win
is the window to update.

int y is the top row of the box.

int x is the left column of the box.

int height
is the height of the box.

int width
is the width of the box.

chtypeboxchar
is used to color the right/lower edges. It also is fill-color used for the box contents.

chtypeborderchar
is used to color the upper/left edges.

dlg_draw_box2
Draw a rectangular box with line drawing characters.

WINDOW * win
is the window to update.

int y is the top row of the box.

int x is the left column of the box.

int height
is the height of the box.

$Date: 2018/06/20 01:21:53 $ 27

DIALOG(3) Library Functions Manual DIALOG(3)

int width
is the width of the box.

chtypeboxchar
is used to fill-color for the box contents.

chtypeborderchar
is used to color the upper/left edges.

chtypeborderchar2
is used to color the right/lower edges.

dlg_draw_buttons
Print a list of buttons at the given position.

WINDOW * win
is the window to update.

int y is the starting row.

int x is the starting column.

const char ** labels
is a list of (pointers to) button labels terminated by a null pointer.

int selected
is the index within the list of the selected button.

int vertical
is true if the buttons are arranged in a column rather than a row.

int limit
is the number of columns (or rows ifvertical) allowed for the display.

dlg_draw_helpline
draw the text indialog_vars.help_lineat the bottom of the given window.

WINDOW * dialog
is the window to modify.

bool decorations
if true, allow room for the scrolling arrows.

dlg_draw_scrollbar
If dialog_state.use_scrollbaris set, draw a scrollbar on the right margin of windows holding scrollable
data. Also(whether or not the scrollbar is drawn), annotate the bottom margin of the window with the per-
centage of data by the bottom of that window, and calldlg_draw_arrows2 to put markers on the window
showing when more data is available.

WINDOW * win
is the window in which the data is scrolled.Becauseleft, right, top, bottomare passed as parameters,
this window can contain additional data.

long first_data
is the zero-based index to the first row of data in the current window.

long this_data
is the zero-based index to the current row of data.

long next_data
is the zero-based index to the next data after the current row.

long total_data
is the total number of rows of data.

$Date: 2018/06/20 01:21:53 $ 28

DIALOG(3) Library Functions Manual DIALOG(3)

int left
is the zero-based left margin/column of the window. The up/down arrows are draw inset by 5 col-
umns from this point.

int right
is the zero-based right margin/column of the window. The scrollbar is drawn flush against this col-
umn.

int top
is the zero-based row within the window on which to draw up-arrows as well as a horizontal line to
show the window’s top.

int bottom
is the zero-based row within the window on which to draw down-arrows as well as a horizontal line
to show the window’s bottom.

chtypeattr
is the window’s background attribute.

chtypeborderattr
is the window’s border attribute.

dlg_draw_shadow
Draw shadows along the right and bottom edge of a window to giv e it a 3-dimensional look. (The height,
etc., may not be the same as the window’s actual values).

WINDOW * win
is the window to update.

int height
is the height of the window.

int width
is the width of the window.

int y is the top row of the window.

int x is the left column of the window.

dlg_draw_title
Draw a title centered at the top of the window.

WINDOW * win
is the window to update.

const char * title
is the title string to display at the top of the widget.

dlg_dummy_menutext
This is a utility function which supports the--inputmenu option of the dialog program. If dia-
log_vars.input_menu is set, dialog_menu passes this pointer todlg_menu as the rename_menutext
parameter. Otherwise, it passesdlg_dummy_menutext.

The function should only returnDLG_EXIT_ERROR .

DIALOG_LISTITEM * items
is the list of menu items

int current
is the index of the currently-selected item

char * newtext
is the updated text for the menu item

$Date: 2018/06/20 01:21:53 $ 29

DIALOG(3) Library Functions Manual DIALOG(3)

dlg_dump_keys
Write all user-defined key-bindings to the given stream, e.g., as part ofdlg_create_rc.

FILE * fp
is the stream on which to write the bindings.

dlg_dump_window_keys
Write all user-defined key-bindings to the given stream, e.g., as part ofdlg_create_rc.

FILE * fp
is the stream on which to write the bindings.

WINDOW * win
is the window for which bindings should be dumped. If it is null, then only built-in bindings are
dumped.

dlg_eat_argv
Remove one or more items from an argument vector.

int * argcp
in/out parameter giving the length of the argument vector. char *** argvp in/out parameter pointing
to the argument vector.int start starting index.int countnumber of arguments to remove.

dlg_edit_offset
Given the character-offset in the string, returns the display-offset wheredialog should position the cursor.
In this context, “characters” may be multicolumn, since the string can be a multibyte character string.

char * string
is the string to analyze

int offset
is the character-offset

int x_last
is a limit on the column positions that can be used, e.g., the window’s size.

dlg_edit_string
Updates the string and character-offset, given various editing characters or literal characters which are
inserted at the character-offset. Returnstrue if an editing change was made (and the display should be
updated), and false if the key was something like KEY_ENTER, which is a non-editing action outside this
function.

char * string
is the (multibyte) string to update

int * offset
is the character-offset

int key
is the editing key

int fkey
is true if the editing key is a function-key

bool force
is used in a special loop case by calling code to force the return value of this function when a func-
tion-key code 0 is passed in.

dlg_exit
Given an internal exit code, check if the corresponding environment variable is set. If so, remap the exit
code to match the environment variable. Finallycall exit with the resulting exit code.

int code
is the internal exit code, e.g.,DLG_EXIT_OK , which may be remapped.

Thedialog program uses this function to allow shell scripts to remap the exit codes so they can distinguish

$Date: 2018/06/20 01:21:53 $ 30

DIALOG(3) Library Functions Manual DIALOG(3)

ESC from ERROR.

dlg_exit_buttoncode
Map the given button index for dlg_exit_label into dialog’s exit-code.

int button
is the button index

dlg_exit_label
Return a list of button labels.If dialog_vars.extra_buttonis true, return the result ofdlg_ok_labels. Oth-
erwise, return a list with the “Exit” label and (ifdialog_vars.help_buttonis set) the “Help” button as well.

dlg_exiterr
Quit program killing alltailboxbg widgets.

const char * fmt
is the format of theprintf -like message to write.

...
are the variables to apply to thefmt format.

dlg_find_index
Given the character-offset to find in the list, return the corresponding array index.

const int *list
contains a list of character-offsets, i.e., indices into a string that denote the beginning of multibyte
characters.

int limit
is the last index into list to search.

int to_find
is the character-offset to find.

dlg_finish_string
If DIALOG_STATE.finish_stringis true, this function discards data used to speed up layout computations.

const char *string
is the address of the string whose data should be discarded. The address rather than contents is used
as the unique identifier because some of the caching is used for editable input-fields.

dlg_flush_getc
Cancel the local data saved by dlg_last_getc.

dlg_editbox
This entrypoint provides the--editbox functionality without the limitations ofdialog’s command-line syn-
tax (compare todialog_editbox).

const char * title
is the title string to display at the top of the widget.

char *** list
is a pointer to an array ofchar * pointers. Thearray is allocated by the caller, and so are the strings
to which it points. Thedlg_editbox function may reallocate the array and the strings.

int * rows
points to the nominal length oflist. The referenced value is updated iflist is reallocated.

int height
is the desired height of the box. If zero, the height is adjusted to use the available screen size.

int width
is the desired width of the box. If zero, the height is adjusted to use the available screen size.

$Date: 2018/06/20 01:21:53 $ 31

DIALOG(3) Library Functions Manual DIALOG(3)

dlg_form
This entrypoint provides the--form functionality without the limitations ofdialog’s command-line syntax
(compare todialog_form).

const char * title
is the title string to display at the top of the widget.

const char *cprompt
is the prompt text shown within the widget.

int height
is the desired height of the box. If zero, the height is adjusted to use the available screen size.

int width
is the desired width of the box. If zero, the height is adjusted to use the available screen size.

int form_height
is the minimum height to reserve for displaying the list. If zero, it is computed based on the given
heightandwidth.

int item_no
is the number ofitems.

DIALOG_FORMITEM * items
This is a list of the items to display in the form.

int * current_item
The widget sets the referenced location to the index of the current display item (cursor) when it
returns.

dlg_free_columns
Free data allocated bydlg_align_columns.

char ** target
This is the array which was reformatted. It points to the first string to free.

int per_row
This is the size of the struct for each row of the array.

int num_rows
This is the number of rows in the array.

dlg_free_formitems
Free memory owned by a list of DIALOG_FORMITEM’s.

DIALOG_FORMITEM * items
is the list to free.

dlg_free_gauge
Remove the gauge widget from the screen and free its associated memory.

void *objptr
points to the gauge widget.

dlg_getc
Read a character from the given window. Handle repainting here (to simplify things in the calling applica-
tion). Also,if input-callback(s) are set up, poll the corresponding files and handle the updates, e.g., for dis-
playing a tailbox. Returns the key-code.

WINDOW * win
is the window within which to read.

int * fkey
as a side-effect, set this to true if the key-code is really a function-key.

$Date: 2018/06/20 01:21:53 $ 32

DIALOG(3) Library Functions Manual DIALOG(3)

dlg_get_attrs
extract the video attributes from the given window.

WINDOW * win
is the window from which to get attributes.

dlg_getc_callbacks
passes the given key-codech to the current window that has established a callback. If the callback returns
zero, remove it and try the next window. If no more callbacks remain, return. If any callbacks were found,
return true, otherwise false.

int ch
is the key-code

int fkey
is true if the key is a function-key

int * result
is used to pass an exit-code to the caller, which should pass that viadlg_exit.

dlg_index_columns
Build a list of the display-columns for the given multibyte string’s characters.

const char *string
is the string to analyze

dlg_index_wchars
Build an index of the wide-characters in the string, so the caller can easily tell which byte-offset begins a
given wide-character.

const char *string
is the string to analyze

dlg_item_help
Draw the string for thedialog_vars.item_helpfeature.

const char * txt
is the help-message

dlg_killall_bg
If dialog has callbacks active, purge the list of all that are not marked to keep in the background. If any
remain, run those in a background process.

int * retval
stores the exit-code to pass back to the caller.

dlg_last_getc
returns the most recent character that was read viadlg_getc.

dlg_limit_columns
Given a column limit, count the number of wide characters that can fit into that limit. The offset is used to
skip over a leading character that was already written.

const char *string
is the string to analyze

int limit
is the column limit

int offset
is the starting offset from which analysis should continue

dlg_lookup_key
Check for a key-binding. If there is no binding associated with the widget, it simply returns the given
curses-key. Otherwise, it returns the result of the binding

$Date: 2018/06/20 01:21:53 $ 33

DIALOG(3) Library Functions Manual DIALOG(3)

WINDOW * win
is the window on which the binding is checked

int curses_key
is the curses key-code

int * dialog_key
is the correspondingdialog internal code (seeDLG_KEYS_ENUM in dlg_key.h).

dlg_max_input
Limit the parameter according todialog_vars.max_input

int max_len
is the value to limit

dlg_match_char
Match a given character against the beginning of the string, ignoring case of the given character. The
matching string must begin with an uppercase character.

int ch
is the character to check

const char *string
is the string to search

dlg_menu
This entrypoint provides the--menu functionality without the limitations ofdialog’s command-line syntax
(compare todialog_menu).

const char * title
is the title string to display at the top of the widget.

const char *cprompt
is the prompt text shown within the widget.

int height
is the desired height of the box. If zero, the height is adjusted to use the available screen size.

int width
is the desired width of the box. If zero, the height is adjusted to use the available screen size.

int menu_height
is the minimum height to reserve for displaying the list. If zero, it is computed based on the given
heightandwidth.

int item_no
is the number ofitems.

DIALOG_LISTITEM * items
This is a list of the items to display in the form.

int * current_item
The widget sets the referenced location to the index of the current display item (cursor) when it
returns.

DIALOG_INPUTMENU rename_menutext
If this is notdlg_dummy_menutext, the widget acts like an inputmenuwidget, providing an extra
“Rename” button, which activates an edit feature on the selected menu item.

dlg_move_window
Moves/resizes the given window to the given position and size.

WINDOW * win
is the window to move/resize.

$Date: 2018/06/20 01:21:53 $ 34

DIALOG(3) Library Functions Manual DIALOG(3)

WINDOW * height
is the height of the resized window.

WINDOW * width
is the width of the resized window.

WINDOW * y
y-ordinate to use for the repositioned window.

WINDOW * x
x-ordinate to use for the repositioned window.

dlg_mouse_bigregion
Retrieve the big-region under the pointer.

int y is the row on which the mouse click occurred

int x is the column on which the mouse click occurred

dlg_mouse_free_regions
Free the memory associated with mouse regions.

dlg_mouse_mkbigregion
Creates a region on which the mouse-clicks will return a specified code.

int y is the top-row of the region.

int x is the left-column of the region.

int height
is the height of the region.

int width
is the width of the region.

int code
is a code used to make the region unique within a widget

int step_x
is used in modes 2 (columns) and 3 (cells) to determine the width of a column/cell.

int step_y
is currently unused

int mode
is used to determine how the mouse position is translated into a code (like a function-key):

1 index by lines

2 index by columns

3 index by cells

dlg_mouse_mkregion
int y is the top-row of the region.

int x is the left-column of the region.

int height
is the height of the region.

int width
is the width of the region.

int code
is a code used to make the region unique within a widget

$Date: 2018/06/20 01:21:53 $ 35

DIALOG(3) Library Functions Manual DIALOG(3)

dlg_mouse_region
Retrieve the frame under the mouse pointer

int y is the row of the mouse-click

int x is the column of the mouse-click

dlg_mouse_setbase
Sets a base for subsequent calls todlg_mouse_mkregion, so they can make regions relative to the start of a
given window.

int x is the left-column for the base

int y is the top-row for the base

dlg_mouse_setcode
Sets a value used internally bydlg_mouse_mkregionwhich is added to thecodeparameter. By providing
different values, e.g., multiples ofKEY_MAX , it is possible to support multiple “big” regions in a widget.
Thebuildlist widget uses this feature to recognize mouse-clicks in the left/right panes.

int code
is the value to add todlg_mouse_mkregion’s codeparameter.

dlg_mouse_wgetch
is a wrapper fordlg_getcwhich additionally maps mouse-clicks (if the curses library supports those) into
extended function-keys which encode the position according to themode in dlg_mouse_mkbigregion.
Returns the corresponding key-code.

WINDOW * win
is the window on which to perform the input

int * fkey
the referenced location is set to true if the key-code is an actual or extended (mouse) function-key.

dlg_mouse_wgetch_nowait
This is a non-blocking variant ofdlg_mouse_wgetch.

WINDOW * win
is the window on which to perform the input

int * fkey
the referenced location is set to true if the key-code is an actual or extended (mouse) function-key.

dlg_need_separator
Check if an output-separator is needed.If dialog_vars.output_separatoris set, return true.Otherwise, if
dialog_vars.input_result is nonempty, return true. If neither, return false.

dlg_new_modal_window
Create a modal window, optionally with a shadow. The shadow is created ifdialog_state.use_shadowis
true.

WINDOW * parent
is the parent window (usually the top-level window of a widget)

int height
is the window’s height

int width
is the window’s width

int y is the window’s top-row

int x is the window’s left-column

dlg_new_window
Create a window, optionally with a shadow. The shadow is created ifdialog_state.use_shadowis true.

$Date: 2018/06/20 01:21:53 $ 36

DIALOG(3) Library Functions Manual DIALOG(3)

int height
is the window’s height

int width
is the window’s width

int y is the window’s top-row

int x is the window’s left-column

dlg_next_button
Return the next index in the list of labels.

const char ** labels
is a list of (pointers to) button labels terminated by a null pointer.

int button
is the current button-index.

dlg_next_ok_buttonindex
Assuming that the caller is usingdlg_ok_labelsto list buttons, find the next index in the list of buttons.

int current
is the current index in the list of buttons

int extra
if negative, provides a way to enumerate extra active areas on the widget.

dlg_ok_buttoncode
Map the given button index for dlg_ok_labelsinto dialog’s exit-code.

int button
is the button-index (which is not necessarily the same as the index in the list of labels).

dlg_ok_label
Returns a list with the “Ok” label, and ifdialog_vars.help_buttonis true, the “Help” label as well.

dlg_ok_labels
Return a list of button labels for the OK/Cancel group of widgets.

dlg_ordinate
Decode the string as an integer, decrement if greater than zero to make a curses-ordinate from a dialog-ordi-
nate.

dlg_parse_bindkey
Parse the parameters of the “bindkeys” configuration-file entry. This expects widget name which may be
"*", followed by curses key definition and thendialog key definition.

char * params
is the parameter string to parse.

dlg_parse_rc
Parse the configuration file and set up variables.

dlg_popen
Open a pipe which ties the standard error and output together. Thepopen function captures only the stan-
dard output of a command.

const char *command
The shell command to run.

const char *type
Like popen, "r" is used to read, and "w" is used to write.

dlg_prev_button
Return the previous index in the list of labels.

$Date: 2018/06/20 01:21:53 $ 37

DIALOG(3) Library Functions Manual DIALOG(3)

const char ** labels
is a list of (pointers to) button labels terminated by a null pointer.

int button
is the current button index

dlg_print_listitem
This is a helper function used for the various “list” widgets, e.g., checklist, menu, buildlist, treeview. Each
list-widget has “tag” and “description” values for each item which can be displayed.If dia-
log_vars.no_tagsis true, the “tag” value is not shown. Thefirst character of the first value shown (tag or
description) is highlighted to indicate that the widget will match it for quick navigation.

WINDOW * win
the window in which to display the text

const char *text
the value to display

int climit
the number of columns available for printing the text

bool first
true if this is the first call (for “tag” and “description”), and the first character of the value should be
highlighted.

int selected
nonzero if the text should be displayed using the “selected” colors

dlg_print_scrolled
This is a wrapper fordlg_print_autowrap which allows the user to scroll too-long prompt text up/down.

Seedlg_check_scrolledfor a function which updates theoffsetvariable used as a parameter here.It com-
plements this function; you need both.If pauseoptis set, this function returns an updatedlast parameter,
needed fordlg_check_scrolledcalls.

WINDOW * win
is the window to update.

const char *prompt
is the string to print

int offset
is the starting line-number to write wrapped text.

int height
is the available height for writing the wrapped text

int width
is the width that the wrapping should occur in

int pauseopt
is true if the extra functionality for scrolling should be enabled. If false, this calls
dlg_print_autowrap without doing any scrolling.

dlg_print_line
Print one line of the prompt in the window within the limits of the specified right margin. Theline will end
on a word boundary and a pointer to the start of the next line is returned, or a NULL pointer if the end of
*prompt is reached.

WINDOW * win
is the window to update.

chtype *attr
holds the starting attributes, and is updated to reflect the final attributes applied to the string.

$Date: 2018/06/20 01:21:53 $ 38

DIALOG(3) Library Functions Manual DIALOG(3)

const char *prompt
is the string to print

int lm
is the left margin.

int rm
is the right margin

int * x
returns the ending x-ordinate.

dlg_prev_ok_buttonindex
Find the previous button index in the list fromdlg_ok_labels.

int current
is the current index

int extra
if negative provides a way to enumerate extra active areas on the widget.

dlg_print_autowrap
Print a string of text in a window, automatically wrap around to the next line if the string is too long to fit
on one line. Note that the string may contain embedded newlines. Thetext is written starting at the top of
the window.

WINDOW * win
is the window to update.

const char *prompt
is the string to print

int height
is the nominal height the wrapped string is limited to

int width
is the width that the wrapping should occur in

dlg_print_size
If dialog_vars.print_siz is true, print the given height/width (from a widget) todialog_state.output, e.g.,
Size: height, width.

int height
is the window’s height

int width
is the window’s width

dlg_print_text
Print up tocolscolumns fromtext, optionally renderingdialog’s escape sequences for attributes and color.

WINDOW * win
is the window to update.

const char * txt
is the string to print

int col
is the column limit

chtype * attr
holds the starting attributes, and is updated to reflect the final attributes applied to the string.

dlg_progressbox
implements the "--prgbox" and "--progressbox" options.

$Date: 2018/06/20 01:21:53 $ 39

DIALOG(3) Library Functions Manual DIALOG(3)

const char * title
is the title on the top of the widget.

const char *cprompt
is the prompt text shown within the widget. If empty or null, no prompt is shown.

int height
is the desired height of the box. If zero, the height is based on the screen size.

int width
is the desired width of the box. If zero, the height is based on the screen size.

int pauseopt
if true, an “OK” button will be shown, and the dialog will wait for it to complete.With an “OK” but-
ton, it is denoted a “programbox”, without an “OK” button, it is denoted a “progressbox”.

FILE * fp
is the file pointer, which may be a pipe or a regular file.

dlg_put_backtitle
Display the background title ifdialog_vars.backtitle is non-null. The background title is shown at the top
of the screen.

dlg_reallocate_gauge
Allocates or reallocates a gauge widget (seedlg_allocate_gauge). Usedlg_update_gaugeto display the
result.

void ** objptr
If the pointer referenced by this parameter is null, the function creates a new gauge widget using
dlg_allocate_gauge. Otherwise, it updates the title and cprompt values, reusing the window from the
previous call on this function. As a side-effect, the function stores the updated object-pointer via the
objptr parameter.

const char * title
is the title string to display at the top of the widget.

const char *cprompt
is the prompt text shown within the widget.

int height
is the desired height of the box. If zero, the height is adjusted to use the available screen size.

int width
is the desired width of the box. If zero, the height is adjusted to use the available screen size.

int percent
is the percentage to show in the progress bar.

dlg_register_buttons
The widget developer should call this function afterdlg_register_window, for the list of button labels asso-
ciated with the widget. One may bind a key to a button, e.g., “OK” forDLGK_OK ,

WINDOW * win
is the window with which to associate the buttons

const char *name
is the widget’s binding name (usually the name of the widget).

const char ** buttons
is the list of buttons

dlg_register_window
For a giv en named widget’s window, associate a binding table.

$Date: 2018/06/20 01:21:53 $ 40

DIALOG(3) Library Functions Manual DIALOG(3)

WINDOW * win
is the window with which to associate the buttons

const char *name
is the widget’s binding name (usually the name of the widget).

DLG_KEYS_BINDING * binding
is the binding table

dlg_remove_callback
Remove a callback.

DIALOG_CALLB ACK * p
contains the callback information.

dlg_renamed_menutext
This is a utility function which supports the--inputmenu option of the dialog program. If dia-
log_vars.input_menu is set, dialog_menu passes this pointer todlg_menu as the rename_menutext
parameter. Otherwise, it passesdlg_dummy_menutext.

The function should add “RENAMED” todialog_vars.input_result , followed by the menu item’s name
and thenewtextvalue (with a space separating the three items), and returnDLG_EXIT_EXTRA .

DIALOG_LISTITEM * items
is the list of menu items

int current
is the index of the currently-selected item

char * newtext
is the updated text for the menu item

dlg_restore_vars
Restoredialog’s variables from the given variable (seedialog_save_vars).

DIALOG_VARS * save
is the variable from which to restore.

The DIALOG_VARS.input_lengthand DIALOG_VARS.input_resultmembers are treated specially, since
these are used by a widget to pass data to the caller. They are not modified by this function.

dlg_result_key
Test adialog internal keycode to see if it corresponds to one of the push buttons on the widget such as
“OK”. This is only useful if there are user-defined key bindings, since there are no built-in bindings that
map directly toDLGK_OK , etc. Returntrue if a mapping was done.

int dialog_key
is thedialog key to test

int fkey
is true if this is a function key

int * resultp
store the result of the mapping in the referenced location.

dlg_save_vars
Savedialog’s variables into the given variable (seedlg_restore_vars).

DIALOG_VARS * save
is the variable into which to save.

dlg_set_focus
Set focus on the given window, making it display above other windows on the screen.

$Date: 2018/06/20 01:21:53 $ 41

DIALOG(3) Library Functions Manual DIALOG(3)

WINDOW * parent
is the parent window (usually the top-level window of a widget)

WINDOW * win
is the window on which to place focus (usually a subwindow of a widget)

dlg_set_result
Setup a fixed-buffer for the result indialog_vars.input_result

const char *string
is the new contents for the result

dlg_show_string
Displays the string, shifted as necessary, to fit within the box and show the current character-offset.

WINDOW * win
is the window within which to display

const char *string
is the string to display

int offset
is the starting (character, not bytes) offset

chtypeattr
is the window attribute to use for the string

int y_base
beginning row on screen

int x_base
beginning column on screen

int x_last
number of columns on screen

bool hidden
if true, do not echo input

bool force
if true, force repaint

dlg_strclone
duplicate the string, likestrdup.

const char *cprompt
is the string to duplicate

dlg_strcmp
compare two strings, ignoring case.

const char *a
is one string

const char *b
is the other string

dlg_string_to_argv
Convert a string to an argument vector returning an index (which must be freed by the caller). The string is
modified:

• Blanks between arguments are replaced by nulls.

• Normally arguments are separated by blanks; however you can double-quote an argument to enclose
blanks. Thesurrounding double-quotes are removed from the string.

• A backslash preceding a double-quote within double-quotes is removed.

$Date: 2018/06/20 01:21:53 $ 42

DIALOG(3) Library Functions Manual DIALOG(3)

• A backslash preceding a newline outside double-quotes is removed.

• Except for special cases, backslashes are preserved in the strings, since otherdialog functions interpret
backslashes, e.g., for colors.

char *blob
is the string to convert.

dlg_sub_window
create a subwindow, e.g., for an input area of a widget

WINDOW * win
is the parent window

int height
is the subwindow’s height

int width
is the subwindow’s width

int y is the subwindow’s top-row

int x is the subwindow’s left-column

dlg_tab_correct_str
If the dialog_vars.tab_correctis true, convert tabs to single spaces. Return the converted result. The call-
er is responsible for freeing the string.

char * prompt
is the string to convert

dlg_trace
If the parameter is non-null, opens a trace file with that name and stores the file pointer india-
log_state.trace.

dlg_trace_2n
logs a numeric value as a comment.

char * name
is the name to log in the comment.

int value
is the value to log in the comment.

dlg_trace_2n
logs a string value as a comment. If the value contains embedded newlines, the comment is continued with
“#+” markers.

char * name
is the name to log in the comment.

int value
is the value to log in the comment.

dlg_trace_chr
If dialog_state.traceis set, translate the parameters into a printable representation, log it on a “chr” line.

int ch
is the nominal keycode value.

int fkey
is nonzero if the value is really a function key. Some of these may be values declared in the
DLG_KEYS_ENUM.

dlg_trace_msg
Write a formatted message to the trace file.

$Date: 2018/06/20 01:21:53 $ 43

DIALOG(3) Library Functions Manual DIALOG(3)

const char * fmt
is the format of theprintf -like message to write.

...
are the variables to apply to thefmt format.

Use the DLG_TRACE macro for portability, in case the trace feature is not compiled into the library. It
uses an extra level of parentheses to work with a variable number of parameters, e.g.,

DLG_TRACE(("this is dialog version %s\n", dialog_version()));

dlg_ttysize
Returns the screensize without using curses. That allows the function to be used before initializing the
screen.

dlg_trace_win
If dialog_state.traceis set, log a printable picture of the given window.

dlg_treeview
This is an alternate interface to ’treeview’ which allows the application to read the list item states back
directly without putting them in the output buffer.

const char * title
is the title on the top of the widget.

const char *cprompt
is the prompt text shown within the widget.

int height
is the desired height of the box. If zero, the height is based on the screen size.

int width
is the desired width of the box. If zero, the height is based on the screen size.

int list_height
is the minimum height to reserve for displaying the list. If zero, it is computed based on the given
heightandwidth.

int item_no
is the number of rows initems.

DIALOG_LISTITEM * items
is the list of items, contain tag, name, and optionally help strings (ifdialog_vars.item_helpis set).
The initial selection state for each item is also in this list.

const char *states
This is a list of characters to display for the given states. Normallya buildlist provides true (1) and
false (0) values, which the widget displays as "*" and space, respectively. An application may set
this parameter to an arbitrary null-terminated string.The widget determines the number of states
from the length of this string, and will cycle through the corresponding display characters as the user
presses the space-bar.

int * depths
This is a list of depths of each item in the tree. It is a separate parameter fromitemsto allow reuse of
the existing functions.

int flag
is eitherFLAG_CHECK, for checklists (multiple selections), orFLAG_RADIOfor radiolists (a single
selection).

int * current_item
The widget sets the referenced location to the index of the current display item (cursor) when it
returns.

$Date: 2018/06/20 01:21:53 $ 44

DIALOG(3) Library Functions Manual DIALOG(3)

dlg_trim_string
The dialog program uses this in each widget to adjust the message string, which may contain the newline
character (referred to as ’\n’) and/or the special substring "\n" (which can be translated into a newline char-
acter).

There are several optional features:

• Unlessdialog_vars.nocollapseis set, each tab is converted to a space before other processing.

• If dialog_vars.no_nl_expandis not set, and the string has "\n" substrings:

• The function changes embedded "\n" substrings to ’\n’ characters.

The function preserves extra spaces after these substitutions.For instance, spaces following a newline
(substring or character) are preserved to use as an indentation.

• If dialog_vars.cr_wrap is set, the function preserves ’\n’ newline characters. Otherwise, each ’\n’
newline character is converted to a space.

• Otherwise, ifdialog_vars.trim_whitespaceis set:

• This function strips all extra spaces to simplify justification.

• If dialog_vars.cr_wrap is set, the function preserves ’\n’ newline characters.Otherwise, each ’\n’
newline character is converted to a space.

• Finally (if dialog_vars.no_nl_expandis set, or the string does not contain "\n" substrings, anddia-
log_vars.trim_whitespaceis not set):

• Unlessdialog_vars.nocollapseis set, sequences of spaces are reduced to a single space.

char * src
is the string to trim

dlg_unregister_window
Remove the bindings for a given window.

WINDOW * win
is the window from which to remove bindings

dlg_update_gauge
Update a gauge widget to show a different percentage value.

void *objptr
points to the gauge object to update.

int percent
is the new percentage value to display.

dlg_will_resize
This filters out bursts ofKEY_RESIZE values. Call this after dlg_getc returns KEY_RESIZE , to
improve performance.

dlg_yes_buttoncode
Map the given button index for dlg_yes_labelsinto dialog’s exit-code.

int button
is the button index

dlg_yes_labels
Return a list of buttons for Yes/No labels.

end_dialog
End use ofdialog functions.

init_dialog
Do some initialization fordialog.

$Date: 2018/06/20 01:21:53 $ 45

DIALOG(3) Library Functions Manual DIALOG(3)

FILE * input
is the real tty input ofdialog. Usually it is the standard input, but if --input-fd option is used, it may
be anything.

FILE * output
is wheredialog will send its result. Usually it is the standard error, but if --stdout or --output-fd is
used, it may be anything.

SEE ALSO
dialog (1).

AUTHOR
Thomas E. Dickey

$Date: 2018/06/20 01:21:53 $ 46

